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Geometric scaling of correlation decay in chaotic billiards
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We investigate decay properties of correlation functions in a class of chaotic billiards. We provide numerical
evidence that velocity autocorrelation functions decay exponentially, with a rate scaling in a simple way with
the (uniform) curvature of the dispersing arcs. Return probabilities, i.e., correlation functions of characteristic
functions of subsets of the phase space, appear to follow a slower than exponential decay law.

PACS number(s): 05.45.+b

In this paper we present some numerical experiments per-
formed on a class of two-dimensional chaotic billiards. In
particular, we will be concerned with decay properties of
correlation functions: though extensive investigations have
been carried out both from a rigorous point of view [1,2],
and by numerical methods [3—6], the situation is still some-
how controversial, and a considerable effort is still devoted
to this problem [7,8].

We will consider diamond (D) billiards; see Fig. 1. The
dynamics refers to a point particle with unit velocity bounc-
ing elastically against the boundary; S’ denotes the continu-
ous time evolution, acting on the phase space .Z, which is
the Cartesian product of the set of configuration coordinates
with the unit circle parametrized by the angle formed by v
with a fixed direction. The system is ergodic and mixing [9]
and the invariant measure is proportional to the Lebesgue
measure on .%, du(z)=(2mA) ! dx dy dw (A being the
area of the billiard region).

The mixing property guarantees that correlation functions
vanish asymptotically. The goal here is to characterize their
decay; as correlation functions are intimately linked to trans-
port coefficients this is an issue of the utmost physical im-
port. For a function f(z) defined on the phase space, the
correlation function (CF) is defined as

2
Cp) = f du(a) f(SDf(@) - ( f ) d,u(Z)f(Z)) .
(1)

Generally speaking, in the presence of the K-system property
the asymptotic behavior of C(¢) at large ¢ depends on the
choice of the function f, very slow decay laws being pos-
sible if very irregular functions f are allowed. From a physi-
cal point of view, a natural choice for f is a component of the
velocity, which is directly related to diffusive properties of
the system. With this choice, and provided arcs do not meet
tangentially, the systems we consider are believed to satisfy a
bound [2] (originally established for finite horizon Lorentz
gas [1,10]), in terms of a stretched exponential
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with 1/2< =<1. A major problem in the rigorous analysis of
diamonds consists in Markov partitions not being finite
[11,10]; this makes it hard to prove exponential decay, even
if the system is purely hyperbolic.

However, for a class of somehow simpler systems (piece-
wise linear automorphisms on the two-torus), Chernov [12]
proved pure exponential decay of a class of CFs in the pres-
ence of both hyperbolicity and singularities (that induce
problems in constructing Markov partitions). Quite recently,
a technique has been proposed [8,13] to prove exponential
decay without making use of Markov partitions; though not
directly applicable to the systems under investigation, it
might provide an approach to the rigorous analysis of bil-
liards. For D systems some numerical experiments are con-
sistent with a pure exponential decay of the velocity CFs [7]
(see also [6]). Earlier investigations supported subexponen-
tial decay for a different type of CF, namely, that of the
characteristic function of a subset of the phase space [5],
which, properly normalized, has the meaning of a return
probability to the chosen subset.

FIG. 1. Boundary of the D system: R is the radius of curvature
of the arcs, x,, is taken equal to 1 in simulations.
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We summarize our main results: we observe pure expo-
nential decay for velocity-velocity correlation functions; the
corresponding decay rates scale according to a power law
with R (radius of the dispersing arcs). By considering other
types of correlations we observe different behaviors: cross-
ing statistics exhibit exponential decay (with rates differing
from the former ones), whereas for the CFs of characteristic
functions of some subset of the phase space the observed
decay is even qualitatively different, slower than exponen-
tial.

We start by investigating velocity-velocity correlation
functions; we consider components of the velocity along a
direction which is diagonal with respect to the orientation of
Fig. 1 (that is along the direction indicated by R). We have
numerically evaluated these functions by Monte Carlo inte-
gration over a set of N, initial conditions. The random gen-
erator we used in performing the integration is based on a
subtractive method (suggested by Knuth [14]); occasionally
we checked that linear congruential methods did not alter the
results; as a further check we reproduced the results of [7]
with our methods.

For the D “standard” [5,7] parameter value
(R=2.236...) we reobtained the data shown by [7] for
C(t)=(v4(t)v4(0)): for a number of initial conditions
Noh= 107 we get y,=0.56+0.02 (which is fully consistent
with the result of [7] once a difference in the overall length
scale is properly taken into account). As before, 7y, indicates
the exponential decay rate [ £(¢)~e~ %'].

The main difficulty in numerical investigations is that
when decay is very fast statistical errors become relevant
after a very short time. In particular, the error involved in
estimating phase averages through Monte Carlo integration
scales like N2 (N being the number of sampling points)
[15]. In the standard case the decay is so rapid that obtaining
an affordable longer time sequence is hopeless; we then in-
vestigated a number of other D cases in which the value of R
is increased (R ranging from 1.58 to 27.59). The structure of
Z(t) is always the same: it exhibits pure exponential decay
and a superimposed oscillatory behavior (there is a regular
alternation of maxima and minima); the periods of oscilla-
tions are quite close to the period 2\/5 of the oscillations of
the CF in the limit case R—> [6]. Some of the results are
plotted in Figs. 2 and 3.

To better appreciate the limits of validity of our simula-
tions, some comments are in order. In all cases, the locations
of maxima are well within the bound imposed by statistical
error (whose order of magnitude is, however, estimated heu-
ristically [15]. Other potential sources of errors [7] involve
an estimate of the initial transient and errors implied by ex-
ponential divergence of trajectories. In particular, in [7] it
has been remarked that after a time T, [such that
e=eMmaxd, where d,, is the machine precision (10 '® for
double precision calculations) and ¢ is the statistical error]
the phase averages employed in correlation function calcula-
tions are to be interpreted as hydrodynamical averages, as we
cannot any more claim that we are following real trajectories
of the system. This is a subtle issue and we have no theoreti-
cal breakthrough (like extension of shadowing properties) to
put forward: empirically it is, however, true that D systems
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FIG. 2. In|C(?)| vs ¢t for a D case (R=5, Npp=5X% 10°), statis-
tical errors relative to maxima are within circles: the dashed line is
a least square fit using maximum points. The circle gives a rough
estimate of the transient (Lyapunov) time 7=~2/\.

seem robust with respect to this issue, as we checked by
rerunning our simulations with lower precision, and breaking
the T, barrier does not produce any sensible change in the
estimate of slopes. Nevertheless, in the absence of reliable
theoretical warrants, we restricted our plots (and 7, esti-
mates) to simulations within the T',, limit (in the case of
Fig. 3 T.x~93.1).

In Fig. 4 we show how v, varies with R: for large values
of R a power-law behavior of the exponent seems to show
up: we do not have any scaling argument capable of explain-
ing this behavior if only approximately, but we believe that
this is worth further investigation (maybe via some mean-
field treatment, in the same spirit as [16]). The same figure

o
S LU B S B B B B L e B

i ]

t

FIG. 3. In|C(¢)| vs ¢ for a D case (R=14.866, N,;=107): the
dashed line is a least square fit using maximum points, statistical
errors at maxima are within circles. The estimated transient time is
shorter than the starting time in the plot.
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FIG. 4. Invy, (A) (errors marked by vertical bars) and Invy, (er-
rors within symbol heights) (O) vs InR: the dashed line has a slope
—1.41, while the dashed-dotted line has a slope —1.18.

also reports on other correlation decay rates, related to
“crossing” statistics [17,18], in the following sense: we cut
the configuration space of the system under investigation,
along the shortest segment joining two facing arcs and run a
single (or a sample of) trajectory, recording the sequence of
times {¢,} from one crossing to the next. From this data set
we approximately reconstruct p(¢) (probability distribution
functions for the crossing time); then the probability that the
particle has not crossed the boundary within time # is built:

Pot) = f () dr. 3)

These are monotonically decreasing functions of their argu-
ment and they are normalized to 1 at the origin.

Our interest in these quantities originates from the fact
that their integral plays a role analogous to correlation func-
tions: it has been argued by Karney [17] (see also [18]) that
the following quantity

¢ = [ az Puie @

T

is proportional to the probability that a particle does not
cross the boundary during a time interval of size 7; an analo-
gous reasoning has been invoked by [19] in dealing with the
transition to chaos in standardlike mappings. In our simula-
tions C, is observed to decay exponentially; Fig. 4 reports
how v, varies with R (C,~e ™ ¥7").

According to earlier suggestions [5], we finally consider
correlation functions involving characteristic functions of
some subset .-Z of the phase space (we denote such a func-
tion by x_,); if .#C_# the corresponding correlation func-
tion is defined as
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FIG. 5. In% (t) vs t for a D case (R=20.518, N;=2X 107,
xe[0,0.25] ye[0,0.25], 6,€[0.1,1.1]); the inset represents
the maxima (indicated by O in the main graph) but plotted as
In|InCpoe(£)| vs Int: a stretched exponential fit on these points gives
yse=0.23. The circle gives a rough estimate of the transient
(Lyapunov) time 7~2/\.
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& (1) = 1—vol(.%)

, ®)

where ( ) _, denotes a phase average, ruled by the invariant
measure, with initial conditions belonging to .-Z. By inspect-
ing Fig. 5 we see that some of the regularity features we
reported upon are lost: the oscillations look less regular than
in the previous case (and this is connected to symmetry loss
in the choice of .-%), but, more strikingly, no clear pure ex-
ponential decay is exhibited. The pattern of maxima is in-
stead compatible with a subexponential behavior; see Fig. 5.
Fitting this pattern with a stretched exponential yields
v~0.23 with an error of a few percent. To the extent to
which numerical results can be held indicative of the true
asymptotic behavior, the observed difference in the behavior
of velocity CFs and of characteristic function CFs may be
traced back to the different degree of regularity of the two
types of functions.

Though the problem of correlation decay has deserved the
attention of the dynamical system community for a long
time, many issues are still unresolved and much effort is still
devoted to gaining a better understanding. In the present pa-
per we have addressed the problem of numerical investiga-
tions on dynamical systems with singularities. Velocity-
velocity correlation functions are shown to exhibit pure
exponential decay; moreover, the decay rates seem to scale
regularly with variations of the geometrical parameter; simi-
lar scaling relations appear to hold for survival probabilities.
This exponential decay matches recent rigorous results
[12,8] for other hyperbolic systems with singularities, and
other numerical experiments [7] as well. Correlation func-
tions involving less smooth phase functions exhibit a more
complex behavior: although this is not in contrast with the
current theoretical understanding, a precise assessment of the
connection between smoothness and decay laws (as given,
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e.g., in [20] for toral automorphisms) for this class of sys-
tems is still an unresolved issue, which we believe to be
relevant to a deeper understanding of typical behavior in dy-
namical systems.
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